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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1073

STUDY OF A SATELLITE ATTITUDE CONTROL SYSTEM
USING INTEGRATING GYROS AS TORQUE SOURCES

By John S. White and Q. Marion Hansen

SUMMARY

This report considers the use of single-degree-of-freedom integrating
gyros as torgue sources for precise control of satellite attitude. Some
general design criteria are derived and applied to the specific example
of the Orbiting Astronomical Observatory. The results of the analytical
design are compared with the results of an analog computer study and also
with experimental results from a low-friction platform. The steady-state
and transient behavior of the system, as determined by the analysis, by
the analog study, and by the experimental platform agreed gquite well.

The results of this study show that systems using integrating gyros
for precise satellite attitude control can be designed to have a reason-
ably rapid and well-demped transient response, as well as very small
steady-state errors. Furthermore, it is shown that the gyros act as
rate sensors, as well as torque sources, so that no rate stabilization
networks are required, and when no error sensor is available, the vehicle
is still rate stabilized. Hence, it is shown that a major advantage of
a gyro control system is that when the target is occulted, an alternate
reference is not required.

INTRODUCTION

For most satellites some form of attitude control 1s required, and
in meny cases the control must be fairly precise. This report will
discuss the use of integrating gyros as torgue sources to obtain precise
satellite attitude control. Similar discussions of systems using motor-
driven inertia wheels and the earth's magnetic field are given in
references 1 and 2.

The requirements placed on satellite attitude control systems vary
from one satellite to another; however, it can be stated generally that
a reference, or tracking line, in the satellite is required to be main-
tained in alinement with a specified external reference, or line of
sight, to a specified accuracy. This must be accomplished in the presence
of disturbing torgues and apparent motion of the external reference.



Motion of the external reference may be oscillatory at the orbital
period, as a result of parallax or velocity aterration, or it may be
nearly constant, as in the case of an earth-pcinting satellite. Dis-
turbing torques acting on an earth satellite nmight come from the earth's
gravity gradient, the sun's radiation pressure, the earth's atmospheric
density, and the earth's magnetic field.

An earth satellite which is currently being studied by NASA and
which will serve as an example for gyro system control in this report
is the Orbiting Astronomical Observatory. The OAO will contain one or
more telescopes, to be used primarily for obtaining photometric and
spectrographic data from ultraviolet star radiation above the earth's
atmosphere. The specific precise control requirements of the OAO, which
will be used as an example in this report, demand that the pointing
error of the telescope (rigidly attached to the vehicle) be reduced from
1 minute of arc to less than 0.1 second of arc within 2 or 3 minutes of
time, and the error maintained at less than 0.l second of arc for one
orbital period of approximately 100 minutes. Furthermore, roll motion
about the line of sight must be maintained at less than 1 second of arc
per second. For solar sighting, the line-of-sight velocity, due to
apparent motion of the external reference, will have a maximum of 0.01
second of arc per second, predominantly from parallax effects. For
stellar sighting, the line-of-sight velocity will have a maximum of
0.005 second of arc per second, predominantly from velocity aberration
effects. Both of these line-of-sight velocity effects are calculated
in reference 1. The disturbance torques were assumed to be on the order
of 100 dyne centimeters. A description of the torque inputs leading to
this estimate may be found in reference 3.

In this report a physical explanation of :he use of a gyrc as a
torque source for a satellite is followed by a derivation and discus-
sion of the equations for a single-degree-of-f ~eedom gyro. The over-all
system equations are then developed, both open loop and closed loop, and
the system errors are discussed. The equation: derived are then normal-
ized and simplified to allow easy visualizatio of the system response
characteristics. A sample system based on the example of the QAQ is
designed, and the results of a three-axis analog study are discussed.
Finally, a comparison is made between theoretical, analog, and
experimental results for a single-axis system.

NOTATTON
Af gyro float angle, radians
C gyro damping constant, dyne cm sec

H gyro angular momentum, dyne cm sec
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Hg stored angular momentum, dyne cm sec

I, moment of inertia of vehicle, gm cm®

I moment of inertia of gyro float, gm cm®

1G] over-all gain from sensor to torgue generator, (dyne cm)/radian
s Laplace operator, sec™t

t time, sec

te duration of time during which vehicle is to be controlled, sec
tlim time during which error signal is limited, sec

tset settling time, sec

Ta control torque or gyro output torque, dyne cm

Tq disturbance torque exerted on body by external sources, dyne cm
TTe torque exerted on gyro float by torque generator, dyne cm

IUG uncertainty in the torque exerted on gyro float, dyne cm

X,y,z axes of a right-hand orthogonal coordinate system

¢ normalized damping ratio
T time constant, sec

£ . 27
Tn natural period, 5; , sec
b angle between tracking line and reference, radians
Pe error in pointing, radians
melim effective 1limit level of error detector, radians
P15 angle between line of sight and reference, radians
W, angular velocity of vehicle, radians/sec

angular velocity of gyro float, radians/sec

wrg angular velocity of line of sight, radians/sec



wn natural frequency of over-all control system, radians/sec
M vector quantity
Subscripts
o] initial value
o1 open loop
ss steady state
max meximum allowable value of quantity

GENERAL SYSTEM DISCUSLION

A simplified block diagram of & single-exis control system that
uses an integrating gyro as a torque source is shown in sketch (a):

Disturbance

torque
o Integrating gyro
Line Pointing Float T4
of sight error Sensor . angle
< T
Y N orque Wheel Signal
ds Tt | amn gen. sen- | Af
%o Control !
torque
Satellite
Te
Tracking
line
Sketch (a)

The basic command loop consists of a sensor o detect pointing error,
Pe, an integrating gyro, which produces a control torque, T., acting on
the satellite, and finally the satellite its=lf, which includes a
rigidly attached telescope.
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The gyros are also rigidly attached to the satellite, with both the
gyro float exis and the spin reference axis perpendicular to the axis
about which it is desired to exert a torque on the satellite. Figure 1
is a pictorial view of one of the gyros, including the angular momentum
vector, H, along the spin axis, the float angular velocity vector, Wy,
along the float axis, and the resultant control torgue vector, Tc,
along the gyro sensitive axis. The gyro serves both as a source of
control torque and as a rate stabilizing device. This can be seen as
follows: If a torque is exerted about the gyro float axis, either by
the torque generator or by an angular velocity of the vehicle sbout the
gyro sensitive axis, the float will move about the gyro float axis at a
rate, wr, (assumlng a gyro with fluid damping) proportional to the torque.
The rate of rotation of the gyro float produces a torque, Tc = wfo
about the sensitive axis. When T. 1s caused by angular velocity of
the satellite, wp, then T, will be in a direction to reduce the satellite
angular velocity resulting in rate stabilization. When T. is caused
by the torque generator the gyro will again exert a torque on the satellite
about the sensitive axis.

The amount of control torque available about the gyro sensitive
axis will depend on the velocity of the gyro float about the float axis,
and this in turn, in the steady state, is inversely proportional to the
damping of the gyro; that is, for a given input torque to the float, if
the damping is reduced, the steady angular velocity of the float, and
hence the output torque, will be increased. The system response, however,
will become more oscillatory; thus, the selection of damping will depend
on the production of a sufficient amount of control torque without the
response becoming too oscillatory.

It should be noted that if it is desired to obtain a constant
vehicle velocity about the gyro sensitive axis, the gyro float velocity
must be zero to maintain constant angular mcomentum (assuming zero disturb-
ance torque acting on the satellite). The torque generator must thus
put out & steady-state torque, Tpg, sufficient to cancel the gyroscopic
torque,'GbXﬁ, acting on the float. This torque-generator torque will be
independent of the damping and will react on the vehicle about one of
the other control axes, producing cross coupling. One possible means
for eliminating this cross coupling is to use two counterrotating gyros
for each axis. Then the torgque from the torque generator of one gyro
will cancel that from the other gyro, and there will be no net cross-
coupling torque on the satellite. However, for the example, where the
gyros are used to maintain the vehicle essentially inertially fixed in
space, this cross coupling is found to be negligible.

There are two disturbances to be considered, as previously mentioned:
an angular velocity of the line of sight, and an external disturbance
torque acting on the satellite. Consider first the effect of a constant
angular velocity of the line of sight. In the steady-state condition,
the gyro float angle will be constant, as previously noted, and the net
torque acting on the gyro float must be zero. The torque created by the



angular velocity of the vehicle about the gyro sensitive axis (to follow
the line of sight) must be exactly canceled by the torque from the torque
generator. This latter torque, for the system shown in sketch (a), is
proportional to the tracking error.

Next, consider only the effect of external torgque on the system.
To counter this torque, the gyro must have a constant velocity about its
float axis, which, since the gyro is damped, requires a constant torgue
from the torque generator. Since the satellitz is not rotating there
will be no torque on the float from gyroscopic precession. Again, the
torque from the torgue generator is proportional to the tracking error.

Thus, to correct for either type of disturbance, there must be a
steady-state pointing error, and to keep this pointing error small the
sensor and amplifier gains must be quite large.

w e

DERIVATION OF SYSTEM EQUATIONS

Gyro Transfer Functior

The block diagram of an integrating gyro is shown in sketch (p):

Amp. and Gyro
torque gen. Float precession -
Pe K 16 ! w¢ o Tc
—_ TG —————46%;}———-— sIf H
Gyro
precession
wp ! At
— H '6.. Y -
A
Fiuid
Torque damping
uncertainties Ty
Y c |l

Sketeh (b)
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The three summing points shown represent the torque summing action of
the gyro float, with the net resultant torque being available to accel-
erate the float, and thus produce an angular velocity of the float, we.
The torque inputs to the gyro asbout the float axis are from the torque
generator, TTg; an uncertainty, TUg, resulting from gravity unbalance,
spring torques, etc.; the gyro precession, -wpH, which is perpendicular
to wp and H; and fluid damping, -wrC. Float velocity, wr, resulting
from the summation of these torques produces an output control torque,
Te = wrH, about the sensitive axis.

The over-all gyro eguations obtained from sketch (b) are

= (Tm + Tug - Ha)

Ap = (l)

1+ s(Ip/C)
g [T + Tug - Hﬂ%j
femr =g { 1 + s(Ig/0) (2)

Equation (2) shows that the gyro can have a torque multiplying effect
(provided H/C > 1), so that the control torque exerted on the body can
be many times larger than that exerted by the torque generator on the
gyro float.

The complete block diagram for single-axis control is shown in
sketch (c).

[ “b |
SIb

Satellite

Sketch (c)



The gyro representation is simplified from that of sketch (b) by use of
the transfer functions of equations (1) and (2). Included are the
external disturbance torque, T3, acting on the satellite, and the uncer-
tainty torque, TUG, acting on the gyro float. The gyro float angle,

Af, is not used in this application, except as a measure of the amount
of momentum stored.

It should be noted that the torque from the torque generator, TTg,
the uncertainties, TUG, and the damping, Cwp, 211 act on the float and
react on the case, so that these reactions appear as disturbing torques
about one of the other satellite axes. However, in the steady state
their values will be much smaller than the control torque, T, and so
will not seriously affect the response of the system.

Open-Loop Transfer Functions
The open-loop transfer functions applicable to sketch (e), assuming

the loop is broken at polnt A, are:

For angular velocity of the vehicle;

c Ir 1
TdE—I—é<SF+ l>+ (TUG +TTG) i

%oy = To1 ToC (3)
g2 Z2f g B 4
HZ
For gyro float angle;
Ip Tga1
(o + ) 3 - =2
H s
Af = (ll»)
o1 2I‘be Ii,C
s = +8——=+1
Closed-Loop Transfer Functions
If the loop is now closed, the relation
Kqg
Tng = —4- (wrg - wp) (5)

can be used to obtain the closed-loop transfer functions. From equations
(3) and (5), the angular velocity equation is found

W = ==
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s HKpg ¢ 5 Kmg
“p = T T T,C (6)
63 2ty g2 By o A
HKTG HKTg Krg

Since the chief concern is the magnitude of the error angle, @,
the closed-loop error equation is desired. Using the relationship

wp = Wrg - 8P (1)

and solving for @ gives the desired equation:

H {5 ol IC C Lr 1
WIsg Rrg <s 7 + 5 2 +1)-1T4 TG s ol + 1 Iﬁc KEE

IpI IpC
63 ot 4 g2 B g B

HKpg HK7G Krg

Pe =

(8)

The assoclated float angle, Ap, found by substituting

S

= (9)

Trg = <“’LS -

into equation (4), is

Ap = (10)

Steady-State Considerations

Consider first the condition when the obJject star is occulted by
the earth; that is, Kmg = O. Applying the final-value theorem for step
inputs of Tg, TUG, and Tpq to equation (3) gives

. cC 1 1
w‘bolss = Td. 'H—2 + TUG T + TIG i (ll)
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It is interesting to note that the resultunt steady-state satellite
angular velocity is independent of the satellite moment of inertia. This
can be seen physically by realizing that for gy = O the control torque,
To, generated by the gyro depends mostly on venhicle angular velocity,
and when this torque equals the disturbance torgue, Ty, there will be no
further change in the vehicle velocity. Furth:rmore, equation (11)
points out a great advantage of the gyro systen over other types of
control systems, namely rate stabilization. Taus, without an error
detector, the vehicle will assume an angular velocity which varies
linearly with and is approximately proportiona’. to the disturbing torque.
This can be compared to the angular velocity o’ a vehiecle, still with
no error detector, but also with no gyro aboard. In this latter case
the external torque produces a constant accele:ration, and so the angular
velocity will increase at a steady rate, that s

Tg

H

W ~=—1t 12
bOlss I'b ( )

If equations (11) and (12) are integrated, the effectiveness of this rate
stabilization can be determined. After a reasinable period of occultation,
it 1s found that for many pratical applications, the error angle with

the gyro control system is much smaller than taat for the uncontrolled
case. In the OAO example, the error for the uicontrolled case might be
much greater than the range of the error detector, while for the gyro-
controlled case, the error would remain within the range of the error
detector so that the gyros would eliminate the need for switching to a
coarse control system following occultation.

For the occulted condition the steady-state float angle may alsoc
be found if the inverse transform of equation (%) 1s simplified for
large values of t.

Ap T =t (13)

This equation shows that the float angle will increase constantly with
time, and thus that the gyro momentum vector rotates to cancel the effect
of the external torque.

For the complete system, with a signal aviilable from the error
detector, the steady-state equations obtained from equations (8) and (10)
are:

o, ~w. K .p . % (14)
®ss IS Kpg ¢ Hpg Kg

A R -—= 1 1
fSS .S H H ( 5)

W e
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The sighting error, Peggr reaches a steady-state value which can
be made small with proper design. The portion of the float angle, Afss’

resulting from wyg 1s a relatively small constant, but that from the

disturbance torque increases directly with time. This 1s to be expected,
since 1t shows that the gyro is storing the mcmentum resulting from the
external torques.

NORMALIZED DESIGN

In the actual design of a control system, the first considerations
are the amount of disturbance torque expected and the length of the time,
te, over which the control system must counter this torque. These two
factors determine the amount of momentum which the control system must
be able to store.

Since torque is the time derivative of momentum, the stored momentum,
Hg, must equal de dt. If a constant disturbance torgue is applied for
the duration of the control time, the maximum stored momentum becomes
HSmax = Tqto. In turn, the stored momentum will be the product of gyro
wheel momentum, H, and the sine of the float angle, Ar. Since the float
angle must be limited to relatively small angles to avoid excessive
cross coupling, sine Ap = Ar, Hence,

Hg Tgt
H = —mex dbc (16)

) Afrax ) Afnax

which will allow the determination of H.

Once a value for H 1is selected, it seems reasonable to normalize
all other variables with respect to this value. When this is done, the
equations previously derived take the following forms: For the open
loop, from equations (3) and (4),

E@g EE_*_l +-‘I_L[]E+.T—r]ig
TE\"EC " i
= 1
wal 52 EE E£ + 5 EE ¢ + 1 =0
HH H H

Afol = (18)
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These reduce to the following steady-state equetions (from eqgs. (ll)
and (13)):

Td Cc TUG. T”G
Wy = = o o = (19)
Olgg H H H H
T
d
A ~ -—=1 20
folss H ( )

For the closed loop, from equations (8) and (10),

E (eI, e N_Tac ® ItE, N\ TG B
YIS Xog \° H H " H H E Ko H C " Krg
o, =
© ol B 2%c H o H L,
I H K O H Kp¢ Kpg
(21)
b G, ), M b oa
“LS § " SE \K1g i " Xrg
Ap = — (22)
sl B o ohec ® o H
HEH KXo H H Kp¢ Kra
And the steady-state.equations (from egs. (14) and (15)) become
SN S W S (23)
ess W Xyg H HEpg H Xpg
I T
b d
Afes ®UIS T " F © (2k)

It should be noted ., as mentioned previocusly, that the term involving
wrg 1n equaticn (24) is usually very small, ard can be neglected in
compariscn with the external torque term.

Equation (23), which is plotted in figure 2. can be used to determine
limits on Kpg/H and (C/H)(H/KTg) by considerirg the values of allowable
error and external disturbances expected. Since, in general, it is
desirable to operate without excess forward-locp gain, this figure can
be used to fix the value of KTG/H, except that when C/H is selected,
the product must be checked. The remaining normalized parameters are
Tp/H, Ir/H, and C/H. The first of these is known as soon as the vehicle

W o
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is selected. As will be shown later, it is desirable for the quantity
Ir/H to be small. Its actual size is determined by mechanical consid-
erations of gyro design. For good system design, C/H should be
selected on the basis of desired transient performance. This can be
done more easily if the transfer function is simplified.

It would be desirable to reduce the form of equation (21) from a
second-order numerator and third-order denominator to first and second
orders, respectively. Considering first the denominator, it can be
shown that 1f the 3 term is very small compared to the s2 term at
§ = Jwp, then, for reasonable values of damping ratio, the s2 term may
be dropped, with negligible effect on the system response. For equation
(21) this requirement for simplification is stated mathematically as

b Ir B 4 2 b Cc H
H H Ko YnT << unt g Ke (25)
which reduces to
If C -~
& “n <<% (25)

or, alternatively, If/C < < 1/wp. Since Ir/C is the time constant of
the gyro float response (sketch (c)), it is reasonable to expect that
If/C will, in fact, be much less than 1/wy if the float response time
is not to degrade the over-all system response. This inequality must,
of course, be checked when the design is completed.,

The numerator of equation (21) should now be considered. Since the
denominator will attenuate greatly all frequencles higher than Wy, 1t
seems reasonable to compare the relative sizes of the numerator terms
at wy. If this is done, the numerator term associated with wrg, at
s = Jjwp, becomes

When equation (26) is applied, it can be seen that the first term
is negligible compared to the second and can be dropped. Further simpli-
fication of the numerator can be made by comparing the numerator term
associated with Ty at s = jw,,

Ir

wn-ﬁ— + 1

Qle
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With equation (26) written as

I
f H
-E-(—jwn<<l

it can be seen that the term associated with T3 reduces to unity. Thus
with the one assumption of equation (26), equetion (21) becomes

I T Ty
H (b +l>_d%'H G H

WLS Kpe \ H H s H Ko H Koo (
= 2
Pe - IbC H H 7
“ HHRg % K

This equation is independent of the float Inertia, If, and, as would be
expected from the remarks concerning the inequality of equation (26),
equaticn (27) cowld be obtained directly from sketch (c) by setting

Ip = O.

Rather common symbols for second-order ecuations may be used to
write equation (27) as

0 Tac o o H
wra B (T8 + 1) - ==& A
LS K H HXgpe B Kog
Pe = 2 5 (28)
82 2 g4
(.dnz wn
where
Iy ¢
T=FH (29)
[ H H¥pg
“a= (R TH (30)
1 [H H B
=5 o 5 = 31)
¢=3 Kpe C Iy (

It should be noted that these three quantities are related by

2lwnT = 1 (32)

w E e
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and further, subject to the restrictions of equation (26), they are
independent of If/H.

From dimensionless transient response curves, such as those given
by Truxal on pages 38 to 41 (ref. 4), one can see that if

Twp < 1 (33)

the over-all transient response will have only slightly more overshoot
than a simple second-order system with no zero. Thus the system can be
designed for a damping ratio, {, in the region of 0.5 to 1.0 (resulting
in Twy < 1, from equation (32)) with assurance of reasonsble transient
response .

Selecting a damping ratioc of 0.7 (giving Twp = 0.7) and solving
equation (31) for C/H gives: :

H H
—— 4
Ko T (34)

mla
!
1o}

Changing the desired damping ratio will of course change the numerical
coefficient in equation (34).

The system design has now been completed, presumably satisfactorily.
It is desirable to be able to check the behavior of this system when the
target star is occulted, which is theoretically the same as setting
KIg = O. When the inequality of equation (26) is applied to equation (17),
the following equation is obtained:

e, %, Mo
_ HH I H ;
wal_ I_bc (35)
SRt
This is now effectively a first-order system with a time constant
b ¢
Tr T FET (36)

The complete design procedure developed may be summarized as follows:
(1) select a value for H, using equation (16); (2) select a value for
KTG/H from figure E(a); (3) compute the value of C/H required for
0.7 damping from equation (34) (or for any other damping ratio from
equation (31)); (4) check figure 2(b) to see that the resultant (c/n)
(H/KTg) is satisfactory; (5) compute values for T and w, from equations

(29) and (30); (5) check to see that the inequality of equation (28) is
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satisfied; (7) check to see that the numerator zero does not deteriorate
the performence, using equation (33); and (8) examine the open-loop
performance, using equation (35).

FRROR AND TORQUE GENERATOR LIMITING

In actual practice, the signal from the sensor will be a voltage
that will be limited at some relatively small angle, compared to the
maximum error angle the sensor can detect. AlLso, there will be some
meximum torque, TTG, available from the torque generator. However, since
the sensor and torque generator are adjacent, they may be combined as
shown in sketch (¢). During the time the sys®em is limited, it is
operating open-loop, and equations (17) through (20) apply. Equation
(19) shows that if the torque~generator torgue (or the error) is limited
at some maximum value, the vehicle will have & corresponding maximum
angular velocity. If very large initial errors exist, the gyros will
accelerate the vehicle to this maximum angular velocity. The vehicle
will then coast at this veloecity until the error becomes less than the
limiting value. Since the vehicle is thus essentially passive during
this coast period, the size of the initial error will not affect the
final portion of the transient after a linear error signal becomes
available. Thus, system stability is essentially independent of the
gsize of the initial error, although the total settling time will be
lengthened as the initial error is increased.

An estimate of the time, tqip, during wh.ch the error is limited,

can be made by means of steady-state characteristics. If the vehicle is
assumed to rotate at its maximum angular velo:ity, wppygo., until the error

becomes equal to the limited wvalue, Peqim’ th:n it can be stated
mathematically that —

Pey, = Peqjp

't . = (37)
lim Womax
This equation assumes that the time to accelerate to wpp,, 1s
negligible. Equation (19) can be written for this purpose as
~ T PerinfTs
“opex T TH H
Thus
Peo = Perim H
tlim = (38)

K 5 N
Pe1im T3
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For a second-order system, such as the one represented by equation
(27), it can be shown that if the damping ratio is about 0.7, the
settling time from an initial step in error to 2 percent of the initial
value is comparable to the natural period. If the velocity of the
vehicle when the error becomes unlimited is neglected and the final error
is assumed to be about 2 percent of the limiting error, then the linear
portion of the settling time can be approximated by Tn. Thus the total
settling time may be approximated by

teet = tlim + Tn (39)

In this equation T, 1is too large, since the vehicle velocity at the
limiting error is assumed to be zero, and t1im 1s tco small, since the
initial acceleration is assumed to occur instantaneously.

SAMPLE DESIGNS

A set of equations and curves has now been developed which will
enable a control system to be designed with satisfactory transient
response and steady-state errors. These curves and eguations will now
be used to design a sample system for the OAO. The requirements for
this satellite are as follows:

@essls 0.1 second of arc
te ® 105 min
The satellite moment of inertia is assumed to be
I, = 101°%yne cm sec2
and the maximum values of disturbances are assumed as
iwLSl= 2.4x10"®radian/sec = 0.005°/hr
’Td]= 100 dyne cm
The necessary gyro constants will be assumed as

{IUGIZ 1 dyne cm

Ie

-3
H 1.4%10 Tsec

i
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To minimize cross coupling, the gyro float anzle is limited at 39, From
equation (16) it is found that H = 1.2X107dy1e cm sec. Allowing an
additional margin of safety and using a round number gives

H= 2X107dyne cm sec

Then

1

| _

_8 -
T 5X10 “sec

|§?l= 5X10_6sec—l

I
3? = 5Xlozsec

To meet the steady-state error requirement (pessl< 0.1 second of

arc), the following gain and damping requirem=nts are determined from
figure 2:

due to ]wIS|
EEE > 0.05 sec™*
H —
tue to 1
u i
529 > 0.1 sec™?t
H —
T
due to ’T?'
Kog g
a4 -1
T > 10 sec

For KTg/H = 0.1 sec™*, which is the mirimum allowable value,
Ip/H = 5%X102 sec, and { = 0.7, it is found from equation (34) that
C/H = 0.01. Checking for the (Kpg/H)(H/C) prcduct gives

Kog B 0.1 _
H ¢ 0,01

10

which 1s satisfactory. Values for T and w, can now be found by using
equations (29) and (30), which give T = 5 sec and w, = 0.14 radian/sec.
The inequality of equation (26) becomes 2x107™% < < 1072, which is
satisfied.,
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The value of the numerator zero is found to be (from eq. (32))
Twn = 0.7. Since this is less than 1, the zero will have little effect
on the over-all response (as previously discussed for eq. (33)). The
time constant of the open-loop response is found from equation (36) as

Tor = 5 sec

Thus, the over-all design appears satisfactory, and the table below
lists the values of the parameters and response characteristics of the
system,

I, = 10*°dyne cm sec® £ = 0.7
H = 2X107dyne cm sec w, = O.14 radian/sec
I -
7? = 1.4x10"%sec T, = 45 sec
Ko -1
= = 0.1 sec Tol = 5 sec
C
7= 0.01

Equations (38) and (39) can be used to estimate the settling time of
this system. With an initial error of 60 seconds of arc and an assumed
1imit level of 5 seconds of arc,

tset = 155 seconds

This value is not unreasonable, and it can be reduced, if desired, by
raising the limit level,

ANAIOG SIMULATION

To check on the analytical work just presented, an analog study was
made of the gyro control system. The three-dimensional problem was
simulated; that is, three gyros and three single-axis sensors were
mounted on the satellite,
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The gyros were mounted, as shown in sketch (4), so that the
sensitive axis of the x gyro was alined along the satellite x axis,

z Axis

S=Sensitive axis
F=Float axis
SRA =Spin reference axis

Sketch (d)

and the float axis was alined at 450 to the satellite y axis. The
sensitive axis of the y gyro was along the satellite y axis, and its
float axis was 45° from the satellite z axis., The z gyro was alined
in a corresponding fashion. The advantage of this gyro mounting arrange-
ment (suggested by the Reeves Instrument Corporation) is that the sum of
the three H wvectors is equal to zero. As a result, changes in wheel
drive frequency will not exert a torque on th: satellite.

Figure 3 shows the analog diagram for th: system. Figure 3(a) shows
one channel of the control system; the other =<wo are identical. Figures
3(b) and 3(c) show the necessary torque and aigular velocity resolutions,
resulting from the 45° angle between float anl satellite axis, and from
the rotation of the float, Af, about the floas axis. The broken lines
in figure 3(a) complete the signal paths when only a single-axis system
is being considered.
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Figure 4 shows the response of the system to a step position input
about one of the axes. It was assumed that all three float angles were
initially zerc and that the error limit was 5 seconds of arc.l The
responses for step inputs about the other two axes had the same charac-
teristics, with no indication of cross coupling. Runs made with initial
errors about two or three axes also showed the same response characteris-
tics, with no cross coupling.

Figure 5 shows the response to the same input, but this time with
an initial, very large float angle of the x gyro, Apy, of 15°. The
input was only in the x axis and, as shown in figure 5, the response
of this channel was essentially the same as in figure 4. The cross
coupling produced error and float angular velocity in both the y and =z
channels. The responses of these two channels were very similar, although
only the y channel is shown. Additional runs were made in which the
other gyros had initial conditions, and the responses were very similar
to those shown in figure 5.

The effect of torque input was also studied on the analog computer,
with the results shown in figure 6. Here there was a step input of
torgque of 100 dyne cm, and, as expected, the error angle reached a
steady-state value of 0,1 second of arc, and the float angle increased
at a constant rate. The other channels showed no signs of cross coupling.

Since the cross coupling is small, a study of the effect of varying
the parameters can be carried out on a single-axis system and the
predicted response characteristics from the linear analysis should be
reasonably valid. A simplified data analysis of figure 4 indicates a
system damping ratio, in the linear region, of about 0.7 and a natural
period of 45 seconds. The settling time, computed from equations (38)
and (39) using ®Pey = 11 seconds of arc and Pelim = 5 seconds of arc,

is 57 seconds. Thus, the values from the analog simulation agree very well
with the predicted values.

EXPERIMENTAL EVALUATION

Some experimental work was carried out on a low-friction, three-
degree-of-freedom platform. The platform, shown in figure 7 and described
in more detail in reference 1, was supported on an air bearing to cbtain
extremely low friction levels. This platform had a considerably smaller
moment of inertia than the OAO, and the gyros used on the platform were
speclally modified single-degree-of-freedom gyros. The particular
constants are

With the value of torque generator gain used, this corresponds
to a maximum torgue-generator torgue of 50 dyne cm,
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Tp = 2.4x108dyne cm sec?
H = 9.6x10°4yne cm se:
I = 1.4x10%*dyne cm sec®

C = 2.7X10%dyne cm sec

Computing the same normalized design ratios used previously gives

Ip
5 = 25 sec

I -
X 1.5%10 Ssec
H

C .

7= 0.028

Experimentally, a gain of Kpg/H = 1.7 sec”t was used to obtain
reasonaeble response. From equation (23) it cen be shown that the
following inputs can be tolerated for [Pegqql < 0.1 second of arec:

;wlstf 8.4x10" "radian/scc

ITWJ < 8 dyne cm
lTJ < 290 dyne cm
As will be shown later, it was found that the platform had random errors

of sbout 1.0 second of arc. From equation (2}), it is found that a torque
of about 3000 dyne cm would produce a steady-state error of this value.

The parameters indicated for the system may be used to compute the
response characteristics. For damping ratio, equation (31) is used to
obtain

t = 0.46
For natural frequency, equation (30) is used to obtain

w, = 1.6 radians/sec

n

W = &>
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which corresponds to a natural period of

Th = 3.9 sec
These values indicate that the response is reasonably damped, but faster
than necessary. The speed of response cannot be reduced (by reducing

the gain) however, without causing an increased steady-state error. The
inequality of equation (26) is satisfied since

2.x107% < < 2,8x1072

The value of T is calculated from equation (29), giving
T = 0.7 sec

and the value of Tuw, dis found to be

This value does not satisfy the inequality of equation (33), so the
numerator term of equation (28) cannot be completely neglected in
estimating the response; however, its effect is only to increase the
initial overshoot by about 15 percent. The time constant, for the open-
loop system, from equation (36), is

Tor = T = 0.7 sec

The following table lists the parameters and the system response
characteristics:

I, = 2.4x10%dyne cm sec?2 t = 0.4
H = 9.6x10%dyne cm sec Wy = 1.6 radians/sec
If/H = 1.5X10"%sec Tn = 3.9 sec
C/H = 0.028 To1 = 0.7 sec
Kpe/H = 1.7 sec™?

Figure 8(a) shows the experimental transient response of the platform
to an initial error. No limiting occurs in the sensor or torque generator,
and the natural frequency and damping compare favorably with the computed
values. It can be seen that accuracy of control is only about 1 second
of arc. It was felt that this large error was caused by external dis-
turbances acting on the platform. Figure 8(b) shows the analog simulation
which used the parameters of the experimental platform and included
"random" steps of external torque having a magnitude of about 1000 dyne cm,
It can be seen that the general character of the initial response is
essentially the same. The amplitude of response of the experimental
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platform to external disturbances is about three times as large as that
of the analog system to the analog disturbance. Since the analog dis-
turbance was 1000 dyne cm, this would indicate an experimental disturb-
ance of about 3000 dyne cm, which agrees very well with the value of
disturbance torque previously estimated. The system responses about the
other axes were similar and no cross coupling between the channels was
noted.

CONCLUDING REMARKE

The results of this investigation have chown that single-degree-cof-
freedom integrating gyros, acting as torgue sources,can provide precise
attitude control of a satellite. The transient behavior of such a system
is reasonably rapid and well damped. The steady-state errors of the
system, in response to external disturbances and motion of the line of
sight, appear to be sufficiently small for meny applications. The gyros
act as rate sensors as well as torque sources, so that no rate stabili-
zation networks are required, and when no error sensor 1s available, the
vehicle is still rate stabilized. Hence, a najor advantage of a gyro
control system is that when the target is occulted, an alternate reference
is not required. In addition, because of the torque multiplying effect
of the gyro, the torque generator and, therefore, the driving amplifier,
can be smaller than would be the case for inertia wheels, where the
torque 1s developed directly by the motor.

Compared to an inertia wheel system, one disadvantage of the gyro
system is that only about 5 percent (for a f_oat angle of +3°) of the
gyro momentum is available for active control; thus a larger or faster
turning wheel is required. Other disadvantages, which are not mentioned
in this report, are the additional moving parts and weight required for
the gyro float and case, which may have to be temperature controlled,
requiring additional power, These advantages and disadvantages, along
with total system weight and power, must be considered when a system for
an actual satellite is being designed.

Ames Research Center
Naticnal Aeronautics and Space Administiation
Moffett Field, Calif., July 12, 19¢1
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Figure 1.- Pictorial view of a single-degree-of-freedom gyro used in

satellite.
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